Find the prime factorization of the following - 96
2196
$2 \longdiv { 4 2 }$
$2 \mid 24$
2|12
$2 \boxed{6}$
3
$96=2 \times 2 \times 2 \times 2 \times 2 \times 3=2^{5} \times 3$

Find the prime factorization of the following - 408

$$
2 \lcm{408}
$$

$2 \mid 204$
$2 \lcm{102}$
$3 \lcm{51}$
17
$408=2 \times 2 \times 2 \times 3 \times 17=2^{3} \times 3 \times 17$

Find the prime factorization of the following - 2025
3 $\mathbf{2 0 2 5}$
31675
$3 \longdiv { 2 2 5 }$
3175
5 25
5
$2025=3 \times 3 \times 3 \times 3 \times 5 \times 5=3^{4} \times 5^{2}$

Express the following numbers as product of their primes: 49896

```
2\49896
\(2 \longdiv { 2 4 9 4 8 }\)
\(2 \lcm{12474}\)
316237
\(3 \longdiv { 2 0 7 9 }\)
\(3 \longdiv { 6 9 3 }\)
\(3 \longdiv { 2 3 1 }\)
\(7 \longdiv { 7 7 }\)
11
\(49896=2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 3 \times 7 \times 11=2^{3} \times 3^{4} \times 7 \times 11\)
```

Express the following numbers as product of their primes: 874944
$2 \longdiv { 8 7 4 9 4 4 }$
$2 \lcm{437472}$
2|218736
$2 \mid 109368$
$2 \longdiv { 5 4 6 8 4 }$
$2 \longdiv { 2 7 3 4 2 }$
$3 \lcm{13671}$
$3 \lcm{4557}$
$7 \lcm{1519}$
$7 \lcm{217}$
31
$874944=2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 7 \times 7 \times 31=2^{6} \times 3^{2} \times 7^{2} \times 31$

Find HCF and LCM of following pairs of integers by applying the fundamental theorem of arithmetic. 336,54

Solution	$2 \longdiv { 3 3 6 }$	2\|54
	21168	3127
	2184	319
	$2 \underline{42}$	3
	3121	
	7	

```
336=2 24 X3X7
54=2X3 3
HCF=2X3=6
LCM=2 ' X }\mp@subsup{3}{}{3}\times7=302
```

Find HCF and LCM of following pairs of integers by applying the fundamental theorem of arithmetic. 225,867

Solution	31225	$3 \longdiv { 8 6 7 }$
	3175	17【\|289
	5\|25	17

$225=3^{2} \times 5^{2}$
$867=3 \times 17^{2}$
HCF $=3$
LCM $=3^{2} X 5^{2} X 17^{2}=65025$

PRIME FACTORISATION METHOD AND VERIFY THAT LCM X HCF = PRODUCT OF THE TWO NUMBERS
i) 26,91
$26=2 \times 13$
$91=7 \times 13$
HCF= 13
LCM=2×7×13 = 182
HCFxLCM $=13 \times 182=2366$

Product of the numbers $=26 \times 91=2366$
:. HCFxLCM = Product of two number
ii) 21,315

$$
\begin{aligned}
& 21=3 \times 7 \\
& 315=3^{2} \times 5 \times 7 \\
& \text { HCF }=21 \\
& \text { LCM }=3^{2} \times 5 \times 7=315 \\
& \text { HCF } \times \text { LCM }=21 \times 315=2835
\end{aligned}
$$

iii) 77,979
$77=11 \times 7$
$979=11 \times 89$
HCF= 11
LCM= $11 \times 7 \times 89=6853$
HCF x LCM = $11 \times 6853=75383$

Given that HCF $(306,657)=9$, find LCM of 306 and 657
Solution
LCM X HCF = Product of two number
LCM $=\frac{\text { Product of two number }}{306 \times 657 \text { HCF }}$
LCM $=\frac{306 \times 657}{9}$
LCM $=34 \times 657$
LCM $=22338$

Find the HCF and LCM of the following positive integers by applying the prime factorization method.
i) $24,36,176$

Solution

$$
\begin{gathered}
24=2^{3} \times 3 \\
36=2^{2} \times 3^{2} \\
176=2^{4} \times 11 \\
\text { HCF }=2^{2}=4 \\
\text { LCM }=2^{4} \times 3^{2} \times 11=1584
\end{gathered}
$$

ii) $84,90,120$

Solution

$$
\begin{gathered}
84=2^{3} \times 3 \times 7 \\
90=2 \times 3^{2} \times 5 \\
120=2^{3} \times 3 \times 5 \\
\text { HCF }=2 \times 3=6 \\
\text { LCM }=2^{3} \times 3^{2} \times 5 \times 7=2520
\end{gathered}
$$

iii) 112, 114, 168

Solution

$$
\begin{aligned}
& 112=2^{4} \times 7 \\
& 144=2^{3} \times 3^{2} \\
& 168=2^{4} \times 3 \times 7
\end{aligned}
$$

$\mathrm{HCF}=2^{3}=8$
LCM $=2^{4} \times 3^{2} \times 7=1008$

HCF of two numbers is 16 and their product is $\mathbf{3 0 7 2}$. Find their LCM ?

Solution

$$
\begin{aligned}
& \mathrm{LCM}=\frac{\text { Product of two number }}{\text { HCF }} \\
& \mathrm{LCM}=\frac{3072}{16} \\
& \mathrm{LCM}=192
\end{aligned}
$$

Find the smallest number which when divided by 35,56 and 91 leaves remainder 7 in each case .

Solution

The required number is 7 more than LCM of 35,56 and 91
LCM of 35,56 and 91
$35=5 \times 7$
$56=2^{3} \times 7$
$91=7 \times 13$
LCM $=5 \times 7 \times 2^{3} \times 13$
Required number $=3640$
$=3640+7 \quad$ (7 is added so that will get the reminder 7 on dividing)
$=3647$

Find the smallest number which when increased by 11 is exactly divisible by $15,20,54$

Solution

The required number will be less than 11 then LCM of 15,20 and 54

$$
\begin{gathered}
\text { LCM of } 15,20 \text { and } 54 \\
15=3 \times 5 \\
20=2^{2} \times 5 \\
54=2 \times 3^{3} \\
\text { LCM }=2^{2} \times 3^{3} \times 5=540
\end{gathered}
$$

Required number $=540-11$ (11 is substracted from 540 , so that when we add it will be divisible by $15,20,54$)
=529

