If $\frac{a}{b}$ is a rational number and ($b \# 0$) in its lowest form. What is the condition on b so that the decimal representation of $\frac{a}{b}$ is terminating.
Solution
For a terminating decimal representation $b=2^{m} \times 5^{n}$ when ' m ' and ' n ' are not negative.
It is correct to say that the number $\frac{343}{2 \times 7 \times 5^{2}}$ has a non terminating and repeating decimal expansion.
Solution $\frac{343}{2 \times 7 \times 5^{2}}=\frac{49}{2 \times 5^{2}}$
Denominator $=2 \times \mathbf{5}^{2}$

When we express in simplest form
$\frac{343}{2 X 7 X^{2}}=\frac{49}{2 X 5^{2}}$
:. It is not correct to say that decimal representation is not terminating repeating decimal.

Without actually performing the long division, state whether the following rational number will have a terminating decimal expression or a non terminating repeating decimal expansion $\frac{125}{44}$
Solution , $\quad \frac{125}{44}$

$$
=\frac{5^{3}}{2^{2} \times 11}
$$

Denominator $=2^{2} \times 11$
:. It is non terminating repeating decimal.

23
8
Solution
$\frac{23}{8}=\frac{23}{2^{3}}$
Denominator $=2^{3}$
:. it is a terminating decimal .
$\frac{129}{2^{2} X 5^{7} X 7^{17}}$
Solution $\frac{129}{2^{2} X 5^{7} \times 7^{17}}$
Denominator $=2^{2} \times 5^{7} \times 7^{17}$
:. it is non terminating repeating decimal

Write down the decimal expression of the following rational number by writing m, n are non negative integers, $\frac{3}{8}$
Solution $=\frac{3}{8}$
(divide 3 by 8)

$$
\begin{aligned}
& =\frac{3}{2^{3}} \\
& =0.375
\end{aligned}
$$

Write down the decimal expression of the following rational number by writing m, n are non negative integers, $\frac{7}{80}$

$$
\begin{aligned}
\text { Solution } & =\frac{7}{80} \\
& =\frac{7}{2^{4} x 5} \\
& =0.0875
\end{aligned} \quad \text { (divide } 7 \text { by } 80 \text {) }
$$

Write down the decimal expression of the following rational number by writing m, n are non negative integers, $\frac{14588}{625}$

Solution $=\frac{14588}{625}$
(divide 14588 by 625)
$=\frac{14588}{5^{4}}$
$=23.3408$

Categories each of the following as rational or irrational number. If they are rational of the form, what can you say about prime factorization of b ?

14.2312345

Solution
Since it is a terminating decimal it is a rational number of the form, where $b=2^{m} \times 5^{n}, m$ and n are non negative integers.

3.121012100121000121

Solution

Since it is a non terminating repeating decimal, it is an irrational number

8.020567

Solution

Since the number is a non terminating repeating decimal it is a rational number. The denominator b\#
$2^{m} \times 5^{n}$
3.1235

Solution
Since the number is a non terminating and repeating decimal it is a rational number. The denominator b\# $2^{m} \times 5^{n}$

Which rationals are represented by ?
0.125

Solution

$$
0.125=\frac{125}{1000}=\frac{1}{8}
$$

11.225

Solution

$$
11.225=\frac{1125}{1000}=\frac{449}{40}
$$

123.123

Solution
$123.123=\frac{123123}{1000}=\frac{1}{8}$

What can you say about the prime factorization of denominator of following rational numbers
43.4305

Solution
Since it is a terminating decimal, it is a rational number where $b=2^{m} \times 5^{n}$

43.123456789

Solution

Since it is a terminating decimal, it is a rational number where $b=2^{m} \times 5^{n}$

27.142857

Solution,
Since it is a non terminating and repeating decimal it is a rational number where $b \# \mathbf{2}^{m} \times 5^{n}$

